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Axisymmetric bubble or drop in a uniform flow 
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The deformation of an  axisymmetric bubble or drop in a uniform flow of constant 
velocity U is computed numerically. The flow is assumed to  be inviscid and incom- 
pressible. The problem is formulated as a nonlinear integrodifferential system of 
equations for the bubble surface and for the potential function on the surface. These 
equations are discretized and the resulting algebraic system is solved by Newton’s 
method. For U = 0 the bubble is a sphere, The results show that as U increases the 
bubble becomes oblate, spreading out in the direction normal to  the flow and con- 
tracting in the direction of the flow. Then the poles get pushed in and ultimately they 
touch each other. The results also show that there is a maximum value of the Weber 
number above which there is no steady axially symmetric bubble. This value is some- 
what smaller than the approximate value obtained by Moore (1965) but close to that 
found by El Sawi (1974). We also compute the added mass, the drag on the bubble, 
and its terminal velocity in a gravitational field, for large Reynolds numbers. 

1. Introduction 
We consider the deformation of a gas bubble or liquid drop due to  the steady poten- 

tial flow of an incompressible inviscid fluid around it. We shall write ‘bubble’ to 
mean either bubble or drop. Far from the bubble the flow is uniform with a constant 
velocity U (see figure 1). The bubble is assumed to  be axisymmetric around the 
direction of the flow a t  infinity. It is characterized by its pressure pb and its surface 
tension (T, while the fluid has density p and pressure p a  a t  infinity. As we shall see, 
the shape of the bubble is determined by the dimensionless parameter 

Y = ( P b - P m - w J 2 ) / 3 P U 2 .  (1.1) 

The size of the bubble is proportional to the length 2 a / p U 2 .  
For y large the bubble is asymptotically a sphere. As y decreases from infinity, the 

bubble extends in the direction perpendicular to  the flow. At first it becomes nearly 
an oblate spheroid. As y decreases further, the bubble is pushed inward a t  its poles. 
Finally a t  y = yo - - 0.3 opposite sides of the bubble touch each other. The bubble 
shape is then in rough agreement with the slender-body approximation presented by 
Vanden-Broeck & Keller (1980). For y < yo the bubble will presumably become a torus. 

We shall formulate this flow problem as a boundary-value problem in $2 .  Then 
in 5 3 we shall convert it into an integrodifferential equation and in 5 4 present a 
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FIGURE 1.  Computed profile of an axially symmetric bubble with y = 50 in the r ,  z plane of a 
cylindrical co-ordinate system. The flow at infinity is along the z axis and has speed U .  The 
unit of length in which r and z are measured is 2u/pU2, and y is defined by ( 1 . 1 ) .  

method for solving this equation numerically. The method involves discretization, 
which converts the equation into a set of nonlinear algebraic equations. Some of our 
results are shown in figures 1-7 and they are discussed in 8 5 and 6. 

For y > 4 our numerical results agree with Moore’s (1965) results within 10%. He 
assumed the bubble was a spheroid and determined its axis ratio approximately by 
satisfying the pressure condition at the pole and equator. His results were confirmed 
and extended by El Sawi (1974) who used a different approximation based on the 
virial method. Their results also indicated that there is a maximum value of the 
Weber number W above which no steady axisymmetric solution exists. Moore and 
El Sawi have found the value of this maximum to be W = 3.74 and W = 3.27 respec- 
tively. Our results confirm the existence of such a maximum and yield for its value 

yo, we use our computed flow to evaluate the added mass, and 
also the rate of energy dissipation, assuming that the fluid is viscous. Levich (1949) 
has shown that this dissipation rate is asymptotically correct for large Reynolds 
numbers. From it we calculate the drag coefficient of the bubble. By equating the 
drag to the buoyancy, we find the terminal velocity of the bubble. Upon using this 
velocity to calculate the Reynolds number, we find results similar to those of Moore 
( 1  965) and El Sawi (1974). Since we neglect pressure variations within the bubble or 
drop, our results apply to a real drop only if its density and viscosity are small com- 
pared to those of the surrounding fluid. See Harper & Moore (1968). 

W = 3.23. 
For each value of y 

2. Formulation as a boundary-value problem 
Let us consider the steady potential flow of an inviscid incompressible fluid around 

a bubble within which the pressure has the constant valuep, (see figure 1) .  We assume 
that the bubble is symmetric around the z axis of a cylindrical co-ordinate system and 
that the flow is along the z axis at infinity. Thus figure 1 represents a cross-section of 
the bubble. The profile is assumed to be symmetrical around the plane z = 0. It is 
convenient to measure velocities in units of U and lengths in units of 2alpU2.  
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We denote by q5 the potential function. Without loss of generality we assume 

q5=0 at  r = p , .  (2.1) 

Here p M  is the semi-major axis of the bubble. The function # satisfies Laplace’s 
equation in the fluid region. At infinity we require the velocity to be U in the z direc- 
tion, so that the dimensionless velocity is unity in the z direction. Therefore 

q5 N x at infinity. (2.2) 

On the bubble surface the Bernoulli equation and the pressure jump due to surface 
tension vield 

Here q = IV#l is the flow speed, K the mean curvature of the bubble surface counted 
positive when the bubble is on the concave side of the surface and z = q(r)  > 0 the 
equation of the profile of the bubble in the first quadrant. In dimensionless variables 
(2.3) becomes 

where y is defined in (1.1). In addition the normal derivative of # must vanish on the 
surface of the bubble: 

q2 = K - y ,  z = q(r) ,  (2.4) 

- 0, z = q(r) .  _ -  aq5 
an 

Finally we impose the geometrical conditions 

T ( p M )  = 0, d(0) = 0. 

This completes the formulation of the problem of determining the function q(r )  and 
the harmonic function q5. They must satisfy the conditions (2.1), (2.2) and (2.4)-(2.7). 

3. Reformulation as an integrodifferential equation 

tial equation by considering the function 
It is convenient to reformulate the boundary-value problem as an integrodifferen- 

F ( r ,  z )  = $(r ,  x )  - z. (3.1) 

The function F satisfies Laplace’s equation for 1x1 > q(r)  and vanishes a t  infinity in 
view of (2.2). We now apply Green’s theorem to F and the Green’s function g in the 
domain delimited by the surface of the bubble and a sphere of infinite radius. We use 
the symmetry about the z axis and write the area element of the bubble surface as 
r[l+,i2(r)]*drdO. Then by following Garabedian (1964, p. 348), we obtain 

4 
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Here 

For lzol = 7(ro ) )  theintegralin (3.2) is to be interpreted in the Cauchy-principalvalue 
sense, The Green's function g is defined by 

1 
g(rl, 8,, zl, r2,  e,, z2) = - 41; [ (r l  cos el - r2 cos e,)2 + (rl sin el - r2 sin e,)2 + (zl - 2,)2]-4. 

The differential operator a/an in (3.2) denotes the normal derivative along the normal 
pointing into the bubble. 

(3.3) 

To simplify (3.2) we use (2.5) and (3.1) to obtain 

We also assume that the bubble is symmetric about the plane z = 0,  so 

P[r,  -7(r)l = -FCr, r(r)l. (3.5) 

Upon substituting (3.1)-(3.5) into (3.2) for zo = ~ ( r , )  we find after some algebra 

Here 

The integrals in (3.7) can be rewritten in terms of elliptic integrals of the first kind 
(Miksis 1981). 

Next we rewrite (2.4) in the form 

Here a/as denotes the tangential derivative along the curve z = q(r) .  

of integrodifferential equations for the unknowns p M )  ~ ( r )  and d[r ,  7 ( r ) ] .  
For a given value of y ,  the relations (2.1)) (2.6), (2.7), (3.6) and (3.8) define a system 

4. Numerical procedure 

introduce the new independent variable t instead of r by the definition 
To solve the problem (2.1), (2.6), (2.7), (3.6) and (3.8) we find it convenient to 

T = pM(l -P). (4.1 ) 

This particular change of variable is chosen because near r = pM, ( ( r )  is singular. The 
derivative Pt(t) of the new function B(t) = 7[r(t)]/pM is regular at t = 0, which corres- 
ponds to r = p M .  Therefore we rewrite (2.1), (2.6), (2.7), (3.6) and (3.8) in terms oft, 
B(t) and E ( t )  = $ [ r ( t ) , p M B ( t ) I / P A 4 -  
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Next we introduce the N mesh points t ,  defined by 

I-1 
t -- I = 1,  ..., N. I - N - 1 ’  

We also define the corresponding quantities 

It follows from (2.1) and (2.6) that = PI = 0,  so only the N - 1 last PI and the N - 1 
last f ,  are unknown. We shall satisfy the equations (3.6) and (3.8) a t  the N - 2  
mesh points t,, I = 2, . . . , N - 1.  The functions g’ defined in (3.7) introduce logarithmic 
singularities into the integrand of (3.6). We integrate these singularities by using a 
method similar to that of Longuet-Higgins & Cokelet (1976). The remaining part of 
the numerical procedure follows the work of Vanden-Broeck & Keller (1980). Details 
can be found in Miksis (1981). 

We obtain after discretization 2N - 4 nonlinear algebraic equations for the 2 N  - 1 
unknowns f,, PI and pM. By using a three-point Lagrange extrapolation formula, we 
obtain two extra equations from (2.6) and (2.7). Finally we require that the curvature 
be equal to pM y at t = 1.  Thus we obtain 2N - 1 equations. This system is solved by 
Newton’s method. 

All finite-difference formulae used were accurate to a t  least second order, and the 
trapezoidal rule was used in the discretization of the integrals. For y > 0 results of 
better than graphical accuracy were obtained with N = 20. For y < 0 larger values 
of N were necessary. Convergence was checked by comparing results obtained for 
several values of N. Second-order Richardson extrapolation to N = 00 was used when 
necessary. For example, for pM = 1.4, which is near the case of contact, we used 
N = 15, 20 and 25 and obtained pm/pM = 0.1241, 0.1100 and 0.1032 respectively. 
Second-order extrapolation from the first two values to N = 25 yielded 0.1037, 
indicating that the results were indeed very nearly second-order accurate. 

5. Results 
By applying the numerical procedure described in $ 4  we can find bubbles for 

different values of y. Figures 1 and 2 give some examples of them. We note that for y 
large (figure 1)  the shape is nearly spherical. This is no surprise since as y + m (2.4) 
shows that K - y. Thus the bubble tends to a sphere of radius 2y-I. As y decreases 
the bubble becomes nearly an oblate ellipsoid with its semi-minor axis pm in the 
direction of the flow. This nearly ellipsoidal shape was the basis of the approximate 
treatments of Moore (1959, 1963, 1965) and El Sawi (1974). 

In  figure 3 we plot the semi-major and semi-minor axes pM and pm versus y. We 
see that pLW increases as y decreases, indicating that the bubble is elongating in the 
direction perpendicular to the flow. The value of p m  initially increases until y x 1 .1 ,  
after which it starts to decrease and eventually equals zero a t  the critical value 
yo = - 0-31. This value of yo agrees roughly with the value - 0-26 found in the slender- 
body analysis of Vanden-Broeck & Keller ( 1  980). The smallest value of y for which a 

4-2 
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FIGURE 2. Computed bubble cross-sections for the following five values of y (reading from left 
to right) : 2.822, 0.656, - 0.0124, - 0.124, - 0.251. For the first two values of y the cross-section 
is nearly elliptical, while for the last value the opposite sides nearly touch. The unit of length is 
2ulpU2. 
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FIGURE 4 (a). For legend see next page. 

bubble shape is shown in figure 2 is y = - 0.251. Although this is not the critical value 
of 7, the bubble profile does show how the negative curvature a t  the stagnation point 
affects the bubble shape. We did not calculate the shape for smaller values of y because 
the computing time would have been long. 

The critical value of y was found by extrapolation to  pm = 0 of the curve of pm 
versus y. The variation with y of the bubble profile is similar to the two-dimensional 
case treated by Vanden-Broeck & Keller (1980).  

W'e note from (2.4) that y equals the curvature a t  the stagnation point r = 0. For 
y > 0 the curvature a t  r = 0 is positive and the bubble is nearly an oblate spheroid. 
For y c 0 the curvature is negative and the bubble profile is pinched in like an hour- 
glass or figure eight. 

Another important parameter of the bubble is the Weber number 

W = 2 r e p U 2 / a .  (5.1) 

Here re = (3V/4n)f  is the radius of a sphere with the same volume P as the bubble. 
We shall plot the properties of the bubble as functions of W as well as of y. 

I n  addition to the bubble shape, we have calculated its surface area A and volume V .  
We have also calculated the kinetic energy of the fluid when the bubble moves with 
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W 
FIGURE 4. Computed values of the bubble surface area A in units of ( 2 t ~ / p U ~ ) ~ ,  the bubble 
volume V in units of ( 2 ~ / p U 2 ) ~ / 5 ,  and the added mass Ma in units of p ( 2 t ~ / p U ~ ) ~ ,  (a) as func- 
tions of y and ( b )  as functions of the Weber number W .  

velocity U and the fluid is a t  rest a t  infinity. We write i t  as $Mu U2, where Mu is the 
added mass of the bubble. These quantities are given by 

(2a/pU2)-2A = 477 ( 5 . 2 )  

(Bp)- ' (2a/pU2)-3Ha = 2 n  [$(r)  -7(9-)]rdr. 15.4) LPM 
To get (5 .4)  we used equations in Batchelor (1967, 66.4). I n  figures 4(a ,  b ) ,  A ,  V 

and Ma are shown as functions of y and of W .  They all tend to zero as y -f m. This is 
because pM --f 0 as y -+ 00 and the bubble tends to a point. As y -+ yo all three quan- 
tities approach non-zero finite limiting values. 

Moore (1 965) conjectured that there is a maximum Weber number above which 
the solution fails to  exist. Figure 5 confirms this speculation. It is a plot of the Weber 
number versus the axis ratio, p M / p m .  The maximum Weber number is W,,, z 3.23 
and occurs for pM/p, z 3.85. Plotted along with our numerical results are those 
given by the approximate theories of Moore and El Sawi. We note that, after reaching 
a maximum, the Weber number starts decreasing and asymptotically approaches the 
limiting value W z 2.3 .  This limit is found by using in (5.1) and ( 5 . 3 )  the value of V 
extrapolated t o y  = yo. 
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FIGURE 5. The Weber number W as a function of the axis ratio p ~ / p ,  as given by the present 
calculation (curve a), the two-point approximation of Moore (curve b), and the virial approxi- 
mation of El Sawi (curve c). The present calculation yields W,,, = 3-23 at p ~ / p ,  x 3.85. 

6. Drag and terminal velocity 
When a viscous fluid flows past a bubble a t  a high Reynolds number, the flow is 

asymptotically equal to the potential flow past the bubble, except within a very thin 
boundary layer. Levich (1949) has shown that, for a gas bubble, the energy dissipation 
rate D of the flow can be found asymptotically by using this potential flow in the 
dissipation integral for D. Then the dissipation integral can be transformed to an 
integral over the surface S of the bubble to yield (see Lamb 1932, p. 581) 

Here ,u is the viscosity coefficient and q is the dimensionless irrotationd velocity of 
the fluid. By using (2.5) in (6.1) we find, after some calculation (see Miksis 1981), that  
D can be rewritten as 

(6.2) 
16nap 

P 
D-- I, 

where the integral I is defined by 

A similar formula was derived by Harper (1970, 1971). 

maintains the motion of the bubble: 
The dissipation rate D is also equal to the power U F  delivered by the force F which 

D =  U F .  (6.4) 

(6-5) 

In  terms of F and the bubble density pp we define the drag coefficient C, by 

C, = 2F/( 1 -j3)pU2nrz. 
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(1 - p)i R M ~  
FIGURE 6. The product CDM-* as a function of R M i .  Here CD is the drag coefficient of the 
bubble, R is the Reynolds number based on the equivalent radius, and M = q , ~ ~ / p c ~ ~  is a dimen- 
sionless parameter depending only upon the fluid and gravity. Curve (a) is based on the present 
calculation, curve (b )  on Moore's two-point approximation and curve ( c )  on El Sawi's virial 
approximation. 

Then equations (6.2)-(6.5) lead to 
3 2 v  I .  

'D ( 1 - p)p2~3r: 

Usually the force F on a bubble is the buoyancy force due to gravity. Upon using 
this force for F in (6.5) we obtain an equation for the bubble's terminal velocity U :  

Here g is the acceleration of gravity. 
The preceding formulae can be rewritten in terms of the Reynolds number R and 

the dimensionless number M ,  which is determined mainly by the fluid. They are 
defined by 

The Weber number W ,  given by (5.1), is expressible as 

R = 2repU/,u, M = gp4/pa3. (6.8), (6.9) 

FV = (4MR4/3C,)i. (6.10) 

Now (6.6) and (6.8) can be written as 

(1 -p)* M-%', = 64(l4W-'/3)k, (6.11) 

(6.12) (1 -b)i M t R  = 2(31W2)i. 
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FIGURE 7. Computed values of the terminal velocity U as a function of the bubble volume V. 
The unit of U is (p/g,u)-* Mi'C(l -/I)& and the unit of V is g-1p-eM-~,u2(1 -/3)-:. 

We have used (6.11) and (6.12) to plot M-@, versus M t R .  To do so we chose y, 
determined the bubble profile y( r ) ,  calculated W from (5.3) and I from (6.3), and used 
these values of W and I in (6.11) and (6.12). By varying y ,  we obtained the curve 
shown in figure 6. The minimum value of M-@, is 23.93 and it occurs at  M i R  = 3.16. 

Figure 6 also shows the results of Moore (1965) and El Sawi (1974). Their approxi- 
mations are in good agreement with our result for low values of M*R, corresponding 
to large values of y.  Both approximate theories and our calculations show that C, M - )  
reaches a minimum and then increases monotonically with increasing M i R .  

From (6.7), (6.8), (6.11) and (6.12) we also obtain 

U(p/gp)* MI'S( 1 -/I)-: = +( W3/3I)b, (6.13) 

V(gp2Mkp-2) ( 1  -/I)$ = 32n(3I6/W3);. (6.14) 

By using (6.13) and (6.14) we have plotted the terminal velocity U versus the bubble 
volume V in figure 7. 
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